Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170206, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278271

RESUMO

To account for potential differences in bioavailability (and toxicity) due to different soil organic matter (OM) contents in natural and artificial soil (AS), in the current European environmental risk assessment (ERA) a correction factor (CF) of 2 is applied to toxicity endpoints for so called lipophilic pesticides (i.e. log Kow > 2) generated from laboratory tests with soil invertebrates. However, the appropriateness of a single CF is questioned. To improve the accuracy of ERA, this study investigated the influence of soil OM content on the toxicity to the earthworm Eisenia andrei of five active substances used in pesticides covering a wide range of lipophilicity. Laboratory toxicity tests were performed in AS containing 10 %, 5 % and 2.5 % peat, and a natural LUFA 2.2 soil (4.5 % OM), assessing effects on survival, biomass change and reproduction. Pesticide toxicity differed significantly between soils. For all pesticides, toxicity values (LC50, EC50) strongly correlated with soil OM content in AS (r2 > 0.82), with toxicity decreasing with increasing OM content. Obtained regression equations were used to calculate the toxicity at OM contents of 10.0 % and 5.0 %. Model-estimated toxicity between these soils differed by factors of 1.9-3.6, and 2.1-3.2 for LC50 and EC50 values, respectively. No clear relationships between pesticide lipophilicity and toxicity-OM relationships were observed: the toxicity of non-lipophilic and lipophilic pesticides was influenced by OM content in a similar manner. The results suggest that the CF of 2 may not be appropriate as it is based on incorrect assumptions regarding the relationships between lipophilicity, OM content and toxicity. Further research should be conducted to understand the mechanistic link between toxicity and soil OM content to better define more chemically and ecologically appropriate CFs for ERA.


Assuntos
Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Praguicidas/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Toxicidade
2.
Integr Environ Assess Manag ; 19(6): 1457-1472, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37039034

RESUMO

A better understanding of how soil organic matter (OM) content influences pesticide toxicity to soil invertebrates is needed to improve the ecological relevance of risk assessment approaches. In the current study, soil invertebrate toxicity data (LC50 and EC50 values) were collected from studies determining the toxicity of organic chemicals in soils with varying OM content. Relevant studies were identified by performing a literature search and through the use of toxicity databases. The data were used to address the following questions: (1) Can the relationship between toxicity and soil OM content be quantified? (2) Does soil OM content influence different toxicity endpoints in a similar way? (3) Is the influence of soil OM content on sensitivity to pesticides different between species? The results indicate that toxicity-OM relationships are chemical dependent, differ between endpoints, and are species-specific. Hence, the grouping of chemicals based solely on their lipophilicity, as well as having only one correction factor for multiple species, may not be an appropriate approach to risk assessment. Integr Environ Assess Manag 2023;19:1457-1472. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Praguicidas , Poluentes do Solo , Animais , Praguicidas/toxicidade , Solo/química , Poluentes do Solo/análise , Invertebrados , Ecotoxicologia , Medição de Risco
3.
Environ Sci Technol ; 53(24): 14479-14488, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31714076

RESUMO

Sediments play an essential role in the functioning of aquatic ecosystems but simultaneously retain harmful compounds. However, sediment quality assessment methods that consider the risks caused by the combined action of all sediment-associated contaminants to benthic biota are still underrepresented in water quality assessment strategies. Significant advancements have been made in the application of effect-based methods, but methodological improvements can still advance sediment risk assessment. The present study aimed to explore such improvements by integrating effect-monitoring and chemical profiling of sediment contamination. To this end, 28 day life cycle bioassays with Chironomus riparius using intact whole sediment cores from contaminated sites were performed in tandem with explorative chemical profiling of bioavailable concentrations of groups of legacy and emerging sediment contaminants to investigate ecotoxicological risks to benthic biota. All contaminated sediments caused effects on the resilient midge C. riparius, stressing that sediment contamination is ubiquitous and potentially harmful to aquatic ecosystems. However, bioassay responses were not in line with any of the calculated toxicity indices, suggesting that toxicity was caused by unmeasured compounds. Hence, this study underlines the relevance of effect-based sediment quality assessment and provides smarter ways to do so.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Ecossistema , Ecotoxicologia , Monitoramento Ambiental , Sedimentos Geológicos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...